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In STI interventions, size matters
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The investigator must juggle sample size and effect size to
produce a study with a priori credibility and ex post facto utility

S
ample size and effect size are
interrelated parameters that have
been given insufficient considera-

tion in analyses of two major outcome
measures in the field of sexually trans-
mitted infections (STI) prevention—STI
incidence and condom use. Their inter-
relation highlights two critical features
of interventions—statistical significance
and epidemiological importance.

Though there are a myriad variations
on the theme of sample size, the
calculation usually depends on four
parameters. The investigator must des-
ignate an acceptable level for type I error
(the probability of falsely rejecting a null
hypothesis); type II error (the probabil-
ity of failing to reject a false null
hypothesis); variance (the amount of
dispersion in the result that would be
acceptable); and the effect size (the size
of the detectable difference that is
deemed important). Cynics will be quick
to point out that sample size depends on
only one parameter—the amount of
money available for the study—but even
if true, researchers must still deal with
the consequences of the terms so dic-
tated. Because type I and type II error
are often set by convention, the inves-
tigator must juggle sample size and
effect size to produce a study with a
priori credibility and ex post facto
utility.

SOME STATISTICAL
CONSIDERATIONS
An important difference among studies
is whether or not they are measuring
continuous or dichotomous outcomes.
In the former case, effect size can be
assessed by transformation into units of
standard error, and a test of statistical
significance is straightforward. Yet, con-
tinuous outcomes are rare in STI
research. Incidence of STIs is inherently
a dichotomous outcome and condom
use is typically dichotomised, based on
the assumption that consistent (that is,
100%) use is protective against infection
whereas lower rates of use are not
protective.1–3

For dichotomous outcomes, the inves-
tigator measures a proportion (for
example, frequency of condom use or
the frequency of STIs) in a treatment

and control group. The difference of
proportions (the effect size) is usually
tested for statistical significance with
the same transformation into units of
standard error (the normal approxima-
tion), without realising that such a
transformation is critically dependent
on the underlying frequency of the
event in the population. The variance
of a proportion differs along the con-
tinuum from zero to one (that is, the
variance is non-uniform or heteroscedas-
tic) and thus the same effect size will
have different significance depending
on where the outcome, p, falls across the
zero to one spectrum (fig 1 (z test,
probability)).

Though in practice little attention has
been paid to heteroscedasticity, some
important statistical work has focused
on stabilising the variance of the bino-
mial distribution (see appendix). The

inverse sine (arcsin, or sin21) transfor-
mation, specifically,

is one of several transformations that
modulates the variance for extreme
values of p.4 A test of significance using
this transformation demonstrates that,
for the case of a 4% difference and a
moderately large sample size (n = 400),
the boundaries of non-significance are
extended from 10% to 3% (fig 1). In
other words, a small difference with
population probability as high as 10%
would be significant without the trans-
formation, but loses significance if a
procedure to stabilise the variance is
invoked. The ability of the transforma-
tion to correct for a changing variance
diminishes as the expected value of the
outcome decreases and as the sample
size increases. Thus, after a certain
point, a low expected value and a large
sample size can ‘‘overpower’’ the trans-
formation and it will no longer
render non-significance for a value
that was significant before the transfor-
mation.

EFFECT SIZE, SAMPLE SIZE, AND
POWER
Cohen used this transformation,

Figure 1 Comparison of statistical tests on a difference of 0.05 detected between proportions with
a sample size of 400 in each group, using probabilities directly or the arcsin transformation of the
probability*. *Each point on the curve from 0.01 to 0.50 was assumed to be the average
probability for treatment and control groups that were symmetric about this mid point (that is,
p¡0.025). The arcsin transformation (arcsin !p) produces the angle, in radians, whose sin is !p;
the pooled variance associated with transformations of 20.02p and +0.02p were used to test the
significance of the difference in radians (see appendix). Significance testing for the untransformed
probability used the typical critical ratio for a difference of proportions [(p2 2 p1)/!2pq/n]. ‘‘A’’
represents the area of significance for untransformed test and nonsignicance for transformed tests
(see text).
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to form the basis of the measurement
h—the difference of transformed pro-
portions.5 In an in-depth discussion, he
provided extensive tables that permit
calculation of sample size and power
based on the transformed variable. He
suggested that h values of 0.20, 0.50,
and 0.80 constitute small, medium, and
large effect sizes, respectively. Table 1
displays selected untransformed propor-
tions that would be necessary to achieve
each of these h values in studies using
STI incidence as the dependent variable.
Proportions listed under the heading
‘‘small effects’’ (using the h criteria)
would yield risk ratios (in intervention
studies) ranging from 0.33 (for a com-
parison of 2% incidence in the treatment
group v 6% in the control group) to 0.58
(for a comparison of 10% incidence in
the treatment group v 17% in the control
group). Similarly, under the column
showing medium effect sizes, corre-
sponding relative risk ratios range from
0.13 to 0.33. Under the column showing
large effect sizes, the range is from 0.07
to 0.23.

Table 2 displays selected untrans-
formed proportions that would be
necessary to achieve these same h values
in studies with condom use as the
dependent variable. Proportions of peo-
ple using condoms consistently in each
of two groups (for example, interven-
tion v control) are shown. Differences of
proportions that correspond to small
effect sizes (h<0.20) would yield rela-
tive risks of 0.73 (first row entry) to 0.88

(final row entry). Differences of propor-
tions corresponding to medium effect
sizes (h<0,50) would yield relative risk
ratios of 0.51 (first row entry) to 0.67
(final row entry). Finally, the large
effects (h<0.80) would yield relative
risks of 0.39 (first row entry) to 0.58
(final row entry).

Using these correspondences, the h
value provides an alternative approach
to assessing power in a study. Its
advantage lies in making the assess-
ment of effect size less dependent on the
underlying population proportion. To
achieve 80% power (a= 0.05, two
tailed) to detect an h value of 0.40, a
study would need a harmonic mean of
100 participants (fig 2). The harmonic
mean

is used to account for the likely lack of
equal numbers in the two groups. It is
especially important in observational
studies wherein groups are naturally
formed (for example, comparing STI
positive and STI negative participants).
Such a study would be able to detect a
difference of 12% to 19% over a sub-
stantial portion of the zero to one range.
To achieve 80% power to detect an h
value of 0.30, a study would need a
harmonic mean of 180 participants; for
an h value of 0.20, 400 participants
would be required. In the latter case, a
difference of 5% to 10% would be
detectable over most of the proportional

range. Finally, an h value of 0.10
requires about 3000 participants and
would detect a proportional difference
of less than 5% over most of the range.

QUESTIONABLE SIGNIFICANCE
Several recent STI interventions illus-
trate the relations described here
(table 3). Ford et al6 reported a signifi-
cant decrease in syphilis in response to
an intervention project directed to
female sex workers in Bali, with an
effect size of 3.2% (6.8% v 3.6%), an h of
0.06 (quite small by Cohen’s criteria),
and a moderately large sample size.
When the probabilities are transformed,
this result is non-significant. On the
other hand, the medium h of 0.45 for
gonorrhoea (the population probability
was centred at p,0.5) produced a
highly significant result with either test.

Golden and colleagues7 reported a
decline in gonorrhoea for men who
had been exposed to pretest and post-
test HIV counselling (gonorrhoea in
women actually increased, and the
changes in syphilis were non-signifi-
cant). With a sample size in the range of
400–500, the effect size for gonorrhoea
in men was 4.7% (8.3% v 3.6%; h = 0.09)
and the highly significant result was of
only marginal significance using the
transformed test. (As a general practice,
authors will term a p value of 0.06
‘‘marginal,’’ but rarely do so for the
equally marginal p value of 0.04.)
Finally, O’Donnell et al8 reported an
effect size of 4.3% (26.8% v 22.5%;

Table 1 Selected (untransformed) proportions necessary to achieve provided h values in studies using STI incidence as the
dependent variable

Small effects (h>0.20) Medium effects (h>0.50) Large effects (h>0.80)

STI proportions (%) h Value STI proportions (%) h Value STI proportions (%) h Value

2 v 6 0.21 2 v 15 0.51 2 v 27 0.81
3 v 7 0.19 3 v 17 0.50 3 v 30 0.81
4 v 9 0.21 4 v 19 50 4 v 32 0.80
5 v 11 0.19 5 v 21 0.50 5 v 35 0.81
6 v 12 0.21 6 v 23 0.50 6 v 37 0.81
7 v 13 0.20 7 v 25 0.51 7 v 39 0.81
8 v 14 0.19 8 v 26 0.50 8 v 40 0.80
9 v 16 0.21 9 v 28 0.50 9 v 42 0.80
10 v 17 0.17 10 v 30 0.51 10 v 44 0.81

Table 2 Selected (untransformed) proportions necessary to achieve provided h values in studies designating condom use as
the dependent variable

Small effects (h>0.20) Medium effects (h>0.50) Large effects (h>0.80)

STI proportions (%) h Value STI proportions %) h Value STI proportions (%) h Value

25 v 34 0.20 25 v 49 0.51 25 v 64 0.81
30 v 40 0.21 30 v 54 0.50 30 v 69 0.81
35 v 45 0.21 35 v 60 0.50 35 v 74 0.80
40 v 50 0.20 40 v 65 0.51 40 v 78 0.80
45 v 55 0.20 45 v 70 0.50 45 v 82 0.81
50 v 60 0.20 50 v 75 0.51 50 v 86 0.81
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h = 0.09) using a moderately large
sample to assess the effect of a video
intervention on the occurrence of new
STD. Their result, significant without
transformation, was marginally signifi-
cant (t = 2.02) after transformation.

LARGE SAMPLE SIZE
The analysis of a CDC study known as
Project Respect9 further highlights the
effect of a very large sample. This
efficacy trial found that STI incidence
(assessed 6 months after study enrol-
ment) among those assigned to an
enhanced counselling condition was
significantly (p,0.001) lower than inci-
dence among those in the control
condition. The values for incidence were
7.2% versus 10.4%, for an effect size of
3.2% (h = 0.11, a very small value by
Cohen’s criteria). The investigators used
a sample size almost four times larger
(approximately 1450 in each group)
than that depicted in figure 1. As a
result, both transformed and untrans-
formed approaches are significant (sam-
ple size overwhelms the effect of
variance stabilisation). Viewed another
way, at a population prevalence of 8%,

an effect size of 3% will begin to be
significant for both transformed
(t = 2.00) and untransformed
(z = 2.71) tests with a sample size of
1200. However, with a sample size of
1450, the study could have detected an
effect size as small as 2% by using the
untransformed test.

These observations suggest that there
may be important information in the
area between significance as calculated
for transformed and untransformed
probabilities (area ‘‘A’’ in fig 1). If we
assume that area ‘‘A’’ represents a type I
error (incorrectly rejecting the null
hypothesis), such an occurrence sug-
gests that a large sample size may be
capable of detecting an effect size that is
not meaningful. Sample size calcula-
tions, in circumstances of large, expen-
sive studies that are intervening on low
probability events, should thus be based
on the h value.

SIGNIFICANCE VERSUS
EPIDEMIOLOGICAL IMPORTANCE
Significance testing in the absence of
effect size estimation begs the question
of whether statistitically meaningful

findings have any practical epidemiolo-
gical importance. This observation, how-
ever, brings tough questions to the
surface. For example, what is the basis
for saying that Project Respect’s result, a
statistically significant difference of
3.2%, is very small, and how do we sort
out the influence of context on such a
judgment? It may be argued, for exam-
ple, that the ‘‘small’’ difference could
represent a substantial number of cases
averted if the enhanced counselling
protocol were widely applied in STI
clinics. On the other hand, an efficacy
trial creates optimal conditions for an
intervention effect, and the transition
from optimal study conditions to rou-
tine clinic setting dictates a considerable
shortfall in reaching the maximum
effect of 3.2%. Such arguments are
difficult to resolve, especially if
researchers solely rely on significance
testing. A similar example can be found
in a review of findings from Project
Light, a multisite HIV prevention trial.10

For example, the study found a signifi-
cant (p,0.05) difference in STI inci-
dence (as assessed by a 1 year chart
review) between participants in the
control (5.0%) and experimental
(3.0%) conditions. After transformation,
these proportions yield an h value of
0.10 (a very small effect).

The rigid application of statistical
criteria such as a p value of 0.05 or less,
has been questioned in recent years.11–15

Proponents of a less rigid approach
argue that the p value is inappropriate
as currently used, and that the point
estimate and confidence limits, taken in
context, provide readers with consider-
ably more information for making judg-
ments and permit a more coherent
approach to judging a body of literature.
In a similar vein, qualitative evaluation
schemes have been suggested for a
number of statistical measures.
Cohen’s classification of h values into
small, medium, and high, is part of a
tradition exemplified by the kappa
statistic for assessing interobserver var-
iation. Landis and Koch suggested a

Figure 2 Required number (each of two groups) to achieve 80% power with a set at 0.05, using a
two tailed test of significance.

Table 3 Effect size assessment and recalculation of statistical significance in selected studies of STI intervention

Study Outcome

Control Treatment
Effect size
(%) h Value

Cohen’s h
classification

Untransformed Transformed

No (%) No (%) z test Result t test Result

Ford, 20026 Syphilis 6.8 (1489) 3.6 (359) 3.2 0.06 small 2.71 Significant 1.73 NS
Trichomoniasis 7.9 (1489) 3.5 (359) 4.4 0.09 small 3.68 Significant 2.36 Significant
Gonorrhoea 62.0 (1489) 43.0 (359) 19.0 0.45 medium 6.55 Significant 6.51 Significant
Chlamydia 43.0 (1489) 41.0 (359) 2.0 0.04 small 0.69 NS 0.69 NS

Golden, 19967 Gonorrhoea (men) 8.3 (468) 3.6 (400) 4.7 0.09 small 2.98 Significant 2.05 Marginal
Gonorrhoea
(women)

2.9 (140) 6.0 (149)
23.1 20.06

small
21.29

NS
20.83

NS

Syphilis (men) 1.7 (468) 0.75 (400) 0.95 0.02 small 1.29 NS 0.61 NS
Syphilis (women) 0.0 (140) 0.67 (149) 20.67 20.01 small 21.00 NS 2 NS

O’Donnell, 19988 New STD 26.8 (794) 22.5 (1210) 4.3 0.09 small 2.17 Significant 2.02 Marginal
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similar three category empirical
approach that is now widely in use.16

The adoption of Cohen’s h value schema
would, at the very least, provide a
benchmark for assessing studies that
detect ‘‘small’’ effect sizes. Researchers
could then provide a more contextual
analysis—including the economic rami-
fications of a small intervention differ-
ence—of the value of putting such
findings into practice.

A frequent criticism of studies is that
they are underpowered, a phenomenon
that is well understood.17 18 Clearly,
studies may be overpowered as well.
Detection of a small effect size with a
large sample may be flawed on purely
statistical grounds, since it may be an
artefact of the binomial distribution
itself. Clearly, such a result may also
be questioned when considering epide-
miological importance. The transforma-
tion suggested here, coupled with
qualitative criteria, may assist investiga-
tors in the matter of size—neither too
small nor too big.

Sex Transm Infect 2004;80:82–85.
doi: 10.1136/sti.2003.007625
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APPENDIX
In 1950, Freeman and Tukey demon-
strated that the transformed probabil-
ity

stabilises the variance of the binomial
probability.4 As noted, Cohen used this
property to develop the measure h, and
provided qualitative guidelines for the
size of a difference of proportions (see
text).5 We demonstrated the effect of
transformation (fig 1) by examining
probabilities (p) in the range of 0.01 to
0.50, and their transformed equivalents
in radians

The variance of p is p(1 2 p)/n, and
the transformed variance was calculated
as the first derivative of the transformed
variable times the variance of the
untransformed variable

For each probability in the range, and
for a given detectable difference and a
given sample size (p = 0.04 and n = 400
in fig 1), we calculated the normal
deviate using a z test for the untrans-
formed binomial probability

and a t test

for the transformed variable, where
subscripts 1 and 2 correspond to the
upper and lower values, symmetrical
around p, that furnish the desired
difference at a given p. The same
approach was applied to determine
untransformed and transformed signi-
ficance in the examples from the litera-
ture.
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